Signaling pathways induced by serine proteases to increase intestinal epithelial barrier function
نویسندگان
چکیده
Changes in barrier function of the gastrointestinal tract are thought to contribute to the inflammatory bowel diseases Crohn's disease and ulcerative colitis. Previous work in our lab demonstrated that apical exposure of intestinal epithelial cell lines to serine proteases results in an increase in transepithelial electrical resistance (TER). However, the underlying mechanisms governing this response are unclear. We aimed to determine the requirement for proteolytic activity, epidermal growth factor receptor (EGFR) activation, and downstream intracellular signaling in initiating and maintaining enhanced barrier function following protease treatment using a canine intestinal epithelial cell line (SCBN). We also examined the role of phosphorylation of myosin regulatory light chain on the serine protease-induced increase in TER through. It was found that proteolytic activity of the serine proteases trypsin and matriptase is required to initiate and maintain the protease-mediated increase in TER. We also show that MMP-independent EGFR activation is essential to the sustained phase of the protease response, and that Src kinases may mediate EGFR transactivation. PI3-K and ERK1/2 signaling were important in reaching a maximal increase in TER following protease stimulation; however, their upstream activators are yet to be determined. CK2 inhibition prevented the increase in TER induced by serine proteases. The bradykinin B(2) receptor was not involved in the change in TER in response to serine proteases, and no change in phosphorylation of MLC was observed after trypsin or matriptase treatment. Taken together, our data show a requirement for ongoing proteolytic activity, EGFR transactivation, as well as downstream PI3-K, ERK1/2, and CK2 signaling in protease-mediated barrier enhancement of intestinal epithelial cells. The pathways mediating enhanced barrier function by proteases may be novel therapeutic targets for intestinal disorders characterized by disrupted epithelial barrier function.
منابع مشابه
Chymase mediated intestinal epithelial permeability is regulated by protease activating 1 receptor ( PAR ) - 2 / matrix metalloproteinase ( MMP ) - 2 - dependent mechanism
23 Mast cells regulate intestinal barrier function during disease and homeostasis. Homeostatic 24 regulation in vivo is through secretion of the mast cell-specific serine protease chymase. In the 25 present study, we employ in vitro model systems to delineate the molecular pathways involved in 26 chymase-mediated intestinal epithelial barrier dysfunction. Chymase stimulation of intestinal 27 ep...
متن کاملChymase-mediated intestinal epithelial permeability is regulated by a protease-activating receptor/matrix metalloproteinase-2-dependent mechanism.
Mast cells regulate intestinal barrier function during disease and homeostasis. Secretion of the mast cell-specific serine protease chymase regulates homeostasis. In the present study, we employ in vitro model systems to delineate the molecular pathways involved in chymase-mediated intestinal epithelial barrier dysfunction. Chymase stimulation of intestinal epithelial (Caco-2 BBe) cell monolaye...
متن کاملNeutrophil-mediated activation of epithelial protease-activated receptors-1 and -2 regulates barrier function and transepithelial migration.
Neutrophil (PMN) infiltration and associated release of serine proteases contribute to epithelial injury during active phases of mucosal disorders such as inflammatory bowel disease. Previous studies have demonstrated that PMN contact with basolateral surfaces of intestinal epithelial cells in the presence of a chemoattractant results in disruption of barrier function even without transmigratio...
متن کاملSerine proteases decrease intestinal epithelial ion permeability by activation of protein kinase Czeta.
Epithelial permeability to ions and larger molecules in the gut is essential for fluid balance, and its dysregulation contributes to intestinal pathology. We investigated the effect of digestive serine proteases on epithelial paracellular permeability. Trypsin, chymotrypsin, and elastase elicited sustained increases in transepithelial resistance (R(TE)) in polarized monolayers of three intestin...
متن کاملCRF Induces Intestinal Epithelial Barrier Injury via the Release of Mast Cell Proteases and TNF-α
BACKGROUND AND AIMS Psychological stress is a predisposing factor in the onset and exacerbation of important gastrointestinal diseases including irritable bowel syndrome (IBS) and the inflammatory bowel diseases (IBD). The pathophysiology of stress-induced intestinal disturbances is known to be mediated by corticotropin releasing factor (CRF) but the precise signaling pathways remain poorly und...
متن کامل